06 Product Rule proof
by EngliSea on 2020-07-09
(f(x)·g(x))▽x
= 「(f(x+h)·g(x+h)−f(x)·g(x))/h :h⨠0」
= 「(f(x+h)·g(x+h)−f(x+h)·g(x)+f(x+h)·g(x)−f(x)·g(x))/h :h⨠0」


−f(x+h)·g(x)+f(x+h)·g(x) inserted


= 「(f(x+h)·g(x+h)−f(x+h)·g(x))/h :h⨠0」 + 「(f(x+h)·g(x)−f(x)·g(x))/h :h⨠0」


split up into two limits


= 「f(x+h):h⨠0」·「(g(x+h)−g(x))/h:h⨠0」 + 「(f(x+h)−f(x))/h:h⨠0」·「g(x):h⨠0」
= f(x)·(g(x)▽x)+(f(x)▽x)·g(x)