322 Basic null sequences
by EngliSea on 2020-07-14
ᐥThe following are null sequences.
❶ 「1/n˄p」 for p>0
❷ 「c˄n」 for |c|<1
❸ 「n˄p·c˄n」 for p>0 and |c|<1
❹ 「c˄n/n!」 for c∈ℝ
❺ 「n˄p/n!」 for p>0ᐥ

Proof of ❶
∀ε>0 ∃N∈ℕ such that N > 1/ε.
n > N
⇒ n > 1/ε
⇒ 1/n < ε
⇒ |1/n−0| < ε
「1/n」 is a null sequence.
By the power rule, 「(1/n)˄p」 is also a null sequence.

Proof of ❷
(1) c>0
∀c in (0,1) ∃x>0 such that c=1/(1+x).
∃N∈ℕ such that n>N ⇒
|cⁿ|
= |1/(1+x)ⁿ|


Binomial expansion
(1+x)ⁿ
= 「「nꞒk」·x˄k Σk=0,n」
≥ 「「nꞒk」·x˄k Σk=0,1」
= 1+nx


≤ |1/(1+nx)|
< |1/(nx)|
= |(1/x)·(1/n)|


「1/n」 is a null sequence and so is 「(1/x)·(1/n)」 by the scalar product rule.


< ε

(2) c=0
「0ⁿ」 is a null sequence.

(3) c<0
∀ε>0 ∃N∈ℕ such that n>N ⇒ |cⁿ| = |-cⁿ| < ε.

Proof of ❸
(1) p=1, 0<c, n≥2
∀c in (0,1) ∃x>0 such that c=1/(1+x).
∃N∈ℕ such that n>N ⇒
|n·cⁿ|
= |n/(1+x)ⁿ|


Binomial expansion
(1+x)ⁿ
= 「「nꞒk」·x˄k Σk=0,n」
≥ 「「nꞒk」·x˄k Σk=2,2」
= n!/((n−2)!·2!)·x²
= n(n−1)x²/2


≤ |n·2/(n(n−1)x²)|
= |(2/x²)·(1/(n−1))|


「1/n」 is a null sequence and so is 「(1/x)·(1/n)」 by the scalar product rule.


< ε

(2) c=0
「n·0ⁿ」 is a null sequence.

(3) c<0
∀ε>0 ∃N∈ℕ such that n>N ⇒ |n·cⁿ| = |-n·cⁿ| < ε.

(4) p>0
|c|<1 ⇒ |c˄(1/p)|<1
「n·(c˄(1/p))˄n」 is a null sequence for p>0 and |c|<1.
By the power rule, 「(n·(c˄(1/p))˄n)˄p」=「n˄p·c˄n」 is a null sequence for p>0 and |c|<1.

Proof of ❹
(1) c>0
∃m∈ℤ such that m+1>c.
∀ε>0 ∃N>m in ℕ such that n>N ⇒
|c˄n/n!|
= |「c/k Ꝑk=1,n」|
= |「c/k Ꝑk=1,m」·「c/k Ꝑk=m+1,n」|


c/k < 1 for k ≥ m+1
「c/k Ꝑk=m+1,n」 ≤ c/n for k ≥ m+1


≤ |「c/k Ꝑk=1,m」·(c/n)|


「1/n」 is a null sequence and so is 「c/k Ꝑk=1,m」·c·(1/n) by the scalar product rule.


< ε

(2) c=0
「0ⁿ/n!」 is a null sequence.

(3) c<0
∀ε>0 ∃N∈ℕ such that n>N ⇒ |cⁿ/n!| = |-cⁿ/n!| < ε.

Proof of ❺
「n˄p/n!」
= 「n˄p·(1/2)˄n·2˄n/n!」


「n˄p·c˄n」 is a null sequence for |c|<1 and so is 「n˄p·(1/2)˄n」.
「c˄n/n!」 is a null sequence for c∈ℝ and so is 「2˄n/n!」.


By the product rule, 「n˄p/n!」 is a null sequence.