7106
by EngliSea on 2020-07-16
ᐥIf f is monotone on [a,b] then f is Riemann integrable on [a,b].ᐥ

Suppose that f is increasing and let P a partition where x⸤i⸥−x⸤i−1⸥ = (b−a)/n.
∀ε>0 ∃n∈ℕ such that n>(f(b)−f(a))·(b−a)/ε.
「sup(f(x))ƧP[a,b]」
− 「inf(f(x))ƧP[a,b]」
= 「(sup(f(x))−inf(f(x)))ƧP[a,b]」
= 「(f(max(x))−f(min(x)))ƧP[a,b]」
= (f(b)−f(a))·(b−a)/n
< ε