• 08 Chain Rule proof
Definition of differentiation
f(g(x))▽x
= 「(f(g(x+h))−f(g(x)))/h :h⨠0」
= 「(f(g(x+h))−f(g(x)))/(g(x+h)−g(x))·(g(x+h)−g(x))/h :h⨠0」
= 「(f(g(x+h))−f(g(x)))/(g(x+h)−g(x)) :h⨠0」·「(g(x+h)−g(x))/h :h⨠0」
ᐥ
Let g(x+h)−g(x) = t, then 「t :h⨠0」 = 0 and g(x+h) = g(x) ...
http://qindex.info/i.php?x=9693