•
411 Geometric Series
ᐥThe geometric series
「a·x˄r Σr=0,∞」
= a + a·x + a·x² + ... (a≠0)
converges if and only if |x|<1.
Moreover, its sum is then a/(1−r).ᐥ
Partial sum,
(1−x)·「a·x˄r Σr=0,n−1」
= 「a·x˄r Σr=0,n−1」
− 「a·x˄(r+1) Σr=0,n−1」
= 「a·x˄r Σr=0,n−1」
┆「a·x˄(r+1) Σr=0,n−1 ...
9730#9731
SIBLINGS
CHILDREN
COMMENT
9731
•
421 First comparison test
ᐥIf 0 ≤ a⸤n⸥ ≤ b⸤n⸥ for all n∈ℕ then
(a) 「b⸤i⸥ Σi=1,∞」 converges
⇒ 「a⸤i⸥ Σi=1,∞」 converges
(b) 「a⸤i⸥ Σi=1,∞」 diverges
⇒ 「b⸤i⸥ Σi=1,∞」 divergesᐥ
Proof of (a)
┆0 ≤ a⸤n⸥┆
「a⸤i⸥ Σi=1,n」 is increasing.
「a⸤i⸥ Σi=1,n」
┆a⸤n⸥ ≤ b⸤n⸥┆
≤ 「b⸤i⸥ Σi=1,n」
┆0 ≤ b⸤n⸥┆
...
9730#5038
SIBLINGS
CHILDREN
5038
◌◌◌
Series
A series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity.
9730#5170
SIBLINGS
CHILDREN
5170