trustle > S English > Math Cheat Sheets & Vedios | 26 | T
in trustle's webmarks all the webmarks

The Map of Mathematics | R
http://qindex.info/d.php?c=4758#3676

00 History | 16
BC 0800? Roman Numerals | R     BC 0570 - 0495 Pythagoras | R     BC 0500? Pythagorean Mathematicians | R     BC 0500? Hippasus | R     BC 0384 - 0322 Aristotle | R     BC 0300? Euclid | R     BC 0287 - 0212 Archimedes | R     08th century Hindu-Arabic numeral system | R     1202 Leonardo Fibonacci | R     1564 - 1642 Galileo Galilei | R     1571 - 1630 Johannes Kepler | R     1643 - 1727 Isaac Newton | R     1646 - 1716 Gottfried Wilhelm Leibniz | R     Crisis in the Foundation of Mathematics | R     History of Mathematics | R     How Far Mathematical Foundations | R    

10 Arithmatic | 46
01 Introduction to Mathematics | R     01 Place Value | R     02 Addition and Subtraction of Small Numbers | R     02 Decimal Place Value | R     03 Multiplication and Division of Small Numbers | R     03 What Is Arithmetic? | R     04 Fractions, Improper Fractions, and Mixed Numbers | R     04 Order Of Operations | R     05 Factoring | R     05 Large Whole Numbers: Place Values and Estimating | R     06 Decimals: Notation and Operations | R     06 Prime Factorization | R     07 Multi-Digit Addition | R     07 Working With Percentages | R     08 Converting Between Fractions, Decimals, and Percentages | R     08 Multi-Digit Subtraction | R     09 Addition and Subtraction of Large Numbers | R     09 Multi-Digit Multiplication Pt 1 | R     10 Multi-Digit Multiplication Pt 2 | R     10 The Distributive Property | R     11 Basic Division | R     11 Multiplication of Large Numbers | R     12 Division of Large Numbers | R     12 Long Division | R     13 Long Division with 2-Digit Divisors | R     13 Negative Numbers | R     14 Decimal Arithmetic | R     14 Understanding Exponents and Their Operations | R     15 Order of Arithmetic Operations: PEMDAS | R     15 The Distributive Property In Arithmetic | R     16 Divisibility, Prime Numbers, and Prime Factorization | R     16 Mean, Median and Mode | R     17 Least Common Multiple (LCM) | R     17 Negative Numbers | R     18 Adding & Subtracting Integers | R     18 Greatest Common Factor (GCF) | R     19 Addition and Subtraction of Fractions | R     19 Integer Multiplication & Division | R     20 Intro To Exponents (aka Indices) | R     20 Multiplication and Division of Fractions | R     21 Analyzing Sets of Data: Range, Mean, Median, and Mode | R     21 Exponents & Square Roots | R     22 Rounding | R     23 Basic Probability | R     Numbers, Numerals and Digits | R     Roman Numerals | R    

20 Geometry | 38
01 Points, Lines, & Planes | R     02 Angle Basics | R     02 Basic Euclidian Geometry: Points, Lines, and Planes | R     03 Angles & Degrees | R     03 Types of Angles and Angle Relationships | R     04 Polygons | R     04 Types of Triangles in Euclidian Geometry | R     05 Proving Triangle Congruence and Similarity | R     05 Triangles | R     06 Quadrilaterals | R     06 Special Lines in Triangles: Bisectors, Medians, and Altitudes | R     07 Perimeter | R     07 The Triangle Midsegment Theorem | R     08 Area | R     08 The Pythagorean Theorem | R     09 Circles, What Is PI? | R     09 Types of Quadrilaterals and Other Polygons | R     10 Calculating the Perimeter of Polygons | R     10 Circles, Circumference And Area | R     11 Circles: Radius, Diameter, Chords, Circumference, and Sectors | R     11 Volume | R     12 Calculating the Area of Shapes | R     12 The Pythagorean Theorem | R     13 Proving the Pythagorean Theorem | R     14 Three-Dimensional Shapes Part 1: Types, Calculating Surface Area | R     15 Three-Dimensional Shapes Part 2: Calculating Volume | R     Dave | 1    Dimensions | R     Math 8 Lesson 23: Isometric Transformations (Simplifying Math) | R     Matthew Salomone | 3    Mysterium Cosmographicum | R     Symmetry and Transformations (Simplifying Math) | R     The History of Non-Euclidian Geometry - A Most Terrible Possibility - Extra History - #4 | R     The History of Non-Euclidian Geometry - Sacred Geometry - Extra History - #1 | R     The History of Non-Euclidian Geometry - Squaring the Circle - Extra History - #3 | R     The History of Non-Euclidian Geometry - The Great Quest - Extra History - #2 | R     The History of Non-Euclidian Geometry - The World We Know - Extra History - #5 | R     Triangles | R    

30 Algebra properties | R
http://qindex.info/d.php?c=4758#3699

30 Algebra | 54
01 Using Variables | R     01 What Is Algebra? | R     02 Basic Number Properties for Algebra | R     02 Solving Basic Equations Part 1 | R     03 Algebraic Equations and Their Solutions | R     03 Solving Basic Equations Part 2 | R     04 Algebraic Equations With Variables on Both Sides | R     04 Solving 2-Step Equations | R     05 Algebraic Word Problems | R     05 Exponents In Algebra | R     06 Solving Algebraic Inequalities | R     06 What Are Polynomials? | R     07 Simplifying Polynomials | R     07 Square Roots, Cube Roots, and Other Roots | R     08 Simplifying Expressions With Roots and Exponents | R     08 The Distributive Property | R     09 Graphing On The Coordinate Plane | R     09 Solving Algebraic Equations With Roots and Exponents | R     10 Functions | R     10 Introduction to Polynomials | R     11 Adding and Subtracting Polynomials | R     12 Multiplying Binomials by the FOIL Method | R     13 Solving Quadratics by Factoring | R     14 Solving Quadratics by Completing the Square | R     15 Solving Quadratics by Using the Quadratic Formula | R     16 Solving Higher Degree Polynomials by Synthetic Division and the Rational Roots Test | R     17 Manipulating Rational Expressions: Simplification and Operations | R     18 Graphing in Algebra: Ordered Pairs and the Coordinate Plane | R     19 Graphing Lines in Algebra: Understanding Slopes and Y-Intercepts | R     20 Graphing Lines in Slope-Intercept Form (y = mx + b) | R     21 Graphing Lines in Standard Form (ax + by = c) | R     22 Graphing Parallel and Perpendicular Lines | R     23 Solving Systems of Two Equations and Two Unknowns: Graphing, Substitution, and Elimination | R     24 Absolute Values: Defining, Calculating, and Graphing | R     25 What are the Types of Numbers? | R     30 Continuous, Discontinuous, and Piecewise Functions | R     33 Graphing Conic Sections Part 1: Circles | R     34 Graphing Conic Sections Part 2: Ellipses | R     35 Graphing Conic Sections Part 3: Parabolas in Standard Form | R     36 Graphing Conic Sections Part 4: Hyperbolas | R     37 Graphing Higher-Degree Polynomials: The Leading Coefficient Test and Finding Zeros | R     38 Graphing Rational Functions and Their Asymptotes | R     39 Solving and Graphing Polynomial and Rational Inequalities | R     40 Evaluating and Graphing Exponential Functions | R     41 Logarithms Part 1 | R     42 Logarithms Part 2 | R     43 Logarithms Part 3 | R     44 Solving Exponential and Logarithmic Equations | R     45 Complex Numbers: Operations, Complex Conjugates, and the Linear Factorization Theorem | R     46 Set Theory: Types of Sets, Unions and Intersections | R     47 Sequences, Factorials, and Summation Notation | R     48 Theoretical Probability, Permutations and Combinations | R     Reflections of a Function - Nerdstudy | R     Why Computers are Bad at Algebra | R    

31 Exponents, roots and logarithms | R
http://qindex.info/d.php?c=4758#3677

31 Exponents, roots and logarithms | 22
05 Exponents In Algebra | R     07 Square Roots, Cube Roots, and Other Roots | R     08 Simplifying Expressions With Roots and Exponents | R     09 Solving Algebraic Equations With Roots and Exponents | R     14 Understanding Exponents and Their Operations | R     20 Intro To Exponents (aka Indices) | R     21 Exponents & Square Roots | R     40 Evaluating and Graphing Exponential Functions | R     41 Logarithms Part 1 | R     42 Logarithms Part 2 | R     43 Logarithms Part 3 | R     44 Solving Exponential and Logarithmic Equations | R     Change of base | R     Exponential Functions | R     Logarithms | R     Saying Exponents | R     Saying Logarithm | R     Saying Logarithm | R     Triangle of Power | R    

32 Linear Algebra | 23
01 Vectors, what even are they? | R     02 Linear combinations, span and basis vectors | R     03 Linear transformations and matrices | R     04 Matrix multiplication as composition | R     07 How to organize, add and multiply matrices | R     12.1 Vectors in the Plane Part 1 | R     12.1 Vectors in the Plane Part 2 | R     12.2 Vectors in Three Dimensions | R     12.2 Vectors In Three Dimensions 12.2.75 | R     12.3 Dot Product Part 1 | R     12.3 Dot Product Part 2 | R     12.4 Cross Product Part 1 | R     12.4 Cross Product Part 2 | R     12.5 Lines and Curves in Space Part 1 | R     12.5 Lines and Curves in Space Part 2 | R     CBlissMath | 1    Dave | 10    Linda Misener | R     Matrix | R     Matthew Salomone | 11    Tensor | 7    What is a Vector Space? (Abstract Algebra) | R    

35 Abstract Algebra | 4
Set Theory | R     learnifyable | 12    MyWhyU | 9    Sacratica | 4   

40 Angles and coordinates around the unit circle | R
http://qindex.info/d.php?c=4758#3675

40 Sin, cos, tan, csc, sec, cot | R
http://qindex.info/d.php?c=4758#3671

40 Trigonometric laws and identities | R
http://qindex.info/d.php?c=4758#3698

40 Sin, cos, tan, arcsin, arccos, arctan | R
http://qindex.info/d.php?c=4758#3694

40 Trigonometry | 15
01 Introduction to Trigonometry | R     02 Trigonometric Functions | R     03 The Easiest Way to Memorize the Trigonometric Unit Circle | R     04 Basic Trigonometric Identities | R     05 Graphing Trigonometric Functions | R     06 Inverse Trigonometric Functions | R     07 Verifying Trigonometric Identities | R     08 Formulas for Trigonometric Functions | R     09 Solving Trigonometric Equations | R     10 The Law of Sines | R     11 The Law of Cosines | R     Hyperbolic Functions: Definitions, Identities, Derivatives, and Inverses | R     Intro to Radians - Nerdstudy | R     Parametric Equations | R     Polar Coordinates and Graphing Polar Equations | R    

50 Limits & Continuity | 4
01 Limits and Continuity | R     Linda Misener | R     ε δ definition of limit | R     ε δ definition of limit | R    

60 Calculus - derivatives and limits | R
http://qindex.info/d.php?c=4758#3733

60 Calculus - integrals | R
http://qindex.info/d.php?c=4758#3731

60 Calculus | 44
01 Essence of calculus | R     01 The Greeks, Newton and Leibniz | R     01 What Is a Derivative? | R     01 What is Calculus? | R     02 The paradox of the derivative | R     02 The Slope of a Tangent Line | R     02 The Tangent Line and the Derivative | R     03 Derivative formulas through geometry | R     03 Product Rule for Derivatives | R     03 Rates of Change | R     04 Limits and Limit Laws in Calculus | R     04 The Quotient Rule | R     04 Visualizing the chain rule and product rule | R     05 Derivatives of exponentials | R     05 What is a Derivative? | R     06 Derivatives of Polynomial Functions | R     06 Implicit differentiation, what's going on here? | R     07 Derivatives of Trigonometric Functions | R     07 Limits | R     08 Derivatives of Composite Functions: The Chain Rule | R     08 Integration and the fundamental theorem of calculus | R     09 Derivatives of Logarithmic and Exponential Functions | R     09 What does area have to do with slope? | R     10 Higher order derivatives | R     11 Taylor series | R     17 What is Integration? | R     18 The Fundamental Theorem of Calculus | R     19 Properties of Integrals and Evaluating Definite Integrals | R     20 Evaluating Indefinite Integrals | R     21 Evaluating Integrals With Trigonometric Functions | R     22 Integration Using The Substitution Rule | R     23 Integration By Parts | R     24 Integration by Trigonometric Substitution | R     25 Advanced Strategy for Integration in Calculus | R     26 Evaluating Improper Integrals | R     27 Finding the Area Between Two Curves by Integration | R     28 Calculating the Volume of a Solid of Revolution by Integration | R     29 Calculating Volume by Cylindrical Shells | R     30 The Mean Value Theorem For Integrals: Average Value of a Function | R     Taylor and Maclaurin Series | R     The fundamental theorem of calculus | R     What Is a Derivative? | R    

70 Topology | 13
01 Definition of a Topological Space | R     02 Determine if T is a Topology on X | R     03 The Intersection of Topologies on X is a Topology on X Proof | R     04 Two Topologies on X whose Union is not a Topology on X | R     Bob Franzosa - Introduction to Topology | R     Simplicial Complexes - Your Brain as Math Part 2 | Infinite Series | R     The Poincare Conjecture | R     Topology Riddles | R     What is a manifold? | R     What is a Manifold? Lesson 1: Point Set Topology and Topological Spaces | R     What is a Manifold? Lesson 2: Elementary Definitions | R     Who cares about topology? | R    

90 Group Theory | 1
Macauley | R    

99 Terms | 31
Calculus | R     Congruence Modulo | R     Converse | R     Cross Product | R     Dot Product | R     Factorial, Permutation and Combination (Choose) | R     Goldbach conjecture | R     Greek Alphabet | R     Iff | R     Integration | R     Limit | R     Line | R     Linear systems | R     Logarithm | R     Logarithm | R     Logarithms | R     Mathematical Induction | R     Mathematical Notation | R     Matrix | R     Partial derivative | R     Pascal's Triangle | R     Plane | R     Point | R     Prime Factorization | R     Prime number | R     Prime number theorem | R     Space | R     Transformation | R     Triangle classification | R     Trigonometric Functions | R     Vector | R    

Desmos | R
Graphing
http://qindex.info/d.php?c=4758#5071

Luffa | 42
Glome in colors | R     Hollow Glome and Luffa | R     2018-10-30 | R     3-sphere | R     A Breakthrough in Higher Dimensional Spheres | R     Cartesian product | R     Closed set | R     Compact space | R     Connected space | R     Contractible space | R     History of the Poincaré Conjecture | R     How Fast Is It - 01 - Preface | R     How Fast Is It - 02 - The Speed of Light | R     How Fast Is It - 03 - Special Relativity | R     How Fast Is It - 04 - General Relativity I - Geometry | R     How the Universe Works | R     Images | 11    Implicit Function | R     Implicit function theorem | R     Leonard Susskind | R     Loop | R     n-ball | R     n-sphere | R     Non-Euclidean Geometry | R     Path | R     Poincaré conjecture | R     Real coordinate space | R     Riemannian Curvature Tensor | R     Simply connected space | R     Simply connected space | R     Singularities Explained | Infinite Series | R     Space | R     The Poincare Conjecture | R     Thinking visually about higher dimensions | R     Three-torus | R     Tom Campbell | R     Topological manifold | R     volumes and surface areas of n-spheres  | R     Zeno's Paradox | R     Zeno's Paradox | 4   

Mathcha | R
Online Math Editor
http://qindex.info/d.php?c=4758#5327
execute:2.216 sec, load: sec http://qindex.info/d.php?c=4758 [ refresh ] [ Email to trustle ]
Qindex.info 2004,   Introduction | 소개 | 介绍 | 導入 | qindex.info@gmail.com